BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, VOL. 51 (10), 3077—3078 (1978)

Flux Growth of Double Oxides of Niobium and Rare-earth Elements (Ln₃NbO₇)

Yuichi Yamasaki and Yoshinori Sugitani*

Department of Chemistry, The University of Tsukuba, Sakura-mura, Ibaraki 300-31 (Received April 24, 1978)

Synopsis. Crystals of double oxides of rare-earth and niobium Ln₃NbO₇, where Ln=Ho, Y, Er, Dy, and La, and those of rare-earth and tantalum Ln₃TaO₇, where Ln=Y, Er, and Gd, were grown by Bi₂O₃-B₂O₃ and PbF₂-PbO fluxes for the Ln₃NbO₇, and by PbF₂-PbO flux for the Ln₃TaO₇. The composition of Ln₃NbO₇ or Ln₃TaO₇ is not yet known in natural minerals.

Double oxides of niobium (or tantalum) and a rareearth element occur in nature as fergusonite Y(Nb,Ta)O₄ and samarskite Y₄[(Nb,Ta)₂O₇]₃ etc.¹⁾ These compounds have high melting points of over 2000 °C, which depend mainly upon the component ratios between Nb and Ta in the solid solution. We reported that a series of compounds LnNbO₄^{2,3)} and LnTaO₄ were able to be grown by the flux method at lower temperatures than 1300 °C. These oxide compounds are attractive materials due to their electro-optical and/or ferroelastic characters,4) in addition to the possibility of being a new laser matrix. We are now attempting the flux growth of compounds which have a different atomic ratio between the rare-earth element and niobium (or tantalum) than the naturally known minerals. This report describes the syntheses of Ln₃NbO₇ and Ln₃TaO₇ type compounds.

Mixtures of Ln₂O₃ (purity 4N) and Nb₂O₅ (purity 4N) with the molar ratio of 3:1 were used as starting materials. Fluxes were added to the starting materials in the molar ratio of several to tens of times. The flux systems where we tried to grow Ln₃NbO₇ and Ln₃TaO₇ type crystals were PbF₂-PbO, Bi₂O₃-B₂O₃, B₂O₃-Na₂B₄O₇, Bi₂O₃-V₂O₅, and Li₂O-MoO₃. The purity of PbF₂ and PbO was 99.9%, and the others were all of the analytical reagent grade.

The starting material was put in a platinum crucible together with one of the flux materials, and was covered tightly by a platinum lid. This was placed in an electric muffle furnace at 1300 °C and was kept for 2 to 5 h at the same temperature. After that it was cooled slowly down to 900 °C in the rate of 1 to 5 °C/h by a programmed controller. At the final temperature it was taken out of the furnace and was air quenched to room temperature. Products in the crucible were washed with hot diluted HNO3 for several hours. Crystals thus obtained were identified with the desired materials by X-ray powder diffraction.

The crystals of Y₃NbO₇ are shown as an example in Fig. 1. They are mostly octahedrons in shape and come to about 2 mm in the largest distance. Products obtained by the use of different fluxes are listed in Table 1. Crystals having Ln₃NbO₇ composition were obtained both from the flux systems of Bi₂O₃-B₂O₃ (the flux ratio ranges from 10: 0 to 8: 2) and from PbF₂-PbO (9: 1 to 7: 3). A list of Ln₃NbO₇ and Ln₃TaO₇ type compounds

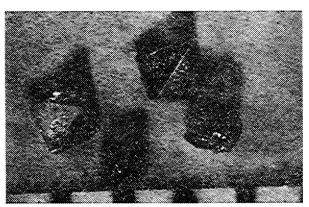


Fig. 1. Crystals of Y₃NbO₇. (1 division=1 mm.)

Table 1. Flux systems used and their products (starting materials are $\rm Y_2O_3$ and $\rm Nb_2O_5$ in 3:1 molar ratio)

Flux	Products
PbF ₂ -PbO	Y ₃ NbO ₇ , YNbO ₄
$\mathrm{Bi_2O_3} ext{-}\mathrm{B_2O_3}$	Y_3NbO_7
$\mathrm{B_2O_3} ext{-}\mathrm{Na_2B_4O_7}$	$\mathrm{NaNbO_3}$
$\mathrm{Bi_2O_3-V_2O_5}$	$\mathrm{V_{3}Nb_{17}O_{50}}$
$ m Li_2O-MoO_3$	${ m LiNbO_3}$

Table 2. List of products having Ln_3NbO_7 and Ln_3TaO_7 composition

Compound Color		Crystal	Lattice parameter		
		system	a (Å)	<i>b</i> (Å)	c (Å)
Ho ₃ NbO ₇	brown	cubic	5.243(3)		
Y_3NbO_7	yellow	cubic	5.238(3)		
$\mathrm{Er_{3}NbO_{7}}$	pale brown	cubic	5.252(2)		
Dy ₃ NbO ₇	brown	cubic	5.259(2)		
${\rm La_3NbO_7}$	brown	ortho- rhombic	7.615(2)	7.761(2)	11.14(2)
Y_3 Ta O_7	pale brown	cubic	5.240(2)		
$\mathrm{Er_{3}TaO_{7}}$	pink	cubic	5.251(2)		
Gd ₃ TaO ₇	yellow	cubic	5.321(2)		

obtained in this work is given in Table 2. Compounds Ln₃TaO₇ were grown using the PbF₂-PbO flux system (from 9: 1 to 7: 3). The growth of crystals containing other rare-earth elements than those listed in Table 2 has not yet been successful. In the course of the runs, Pb₂Nb₂O₇ (pyrochlore type structure), Pb₃Nb₂O₈, and LnNbO₄ type crystals were obtained as by-products.

Precession and Weissenberg photographs show that the crystals given in Table 2, except for La₃NbO₇,

belong to a cubic system with the space group of Fm3m. La₃NbO₇, however, belongs to the orthorhombic system with the space group of Pnma. Crystal structure analysis both for the products and for by-products are now in progress.

The authors are grateful to Professor Kozo Nagashima for his kind support of this work.

References

- 1) J. D. and E. S. Dana, "The System of Mineralogy," 7th ed John Wiley & Sons, Inc. London (1952); H. Strunz, "Mineralogische Tabellen," 5th ed Akad. Verlag, Leipzig
- Y. Sugitani and K. Nagashima, Miner. J., 8, 66 (1975).
 Y. Sugitani, Bull. Chem. Soc. Jpn., 50, 755 (1977).
 S. Tsunekawa and H. Takei, J. Phys. Soc. Jpn., 40, 1523 (1976).